Polynomially growing harmonic functions on connected groups

نویسندگان

چکیده

We study the connection between dimension of certain spaces harmonic functions on a group and its geometric algebraic properties. Our main result shows that (for sufficiently “nice” random walk measures) connected, compactly generated, locally compact has polynomial volume growth if only space linear finite dimension. This characterization is interesting in light fact Gromov’s theorem regarding finitely generated groups does not have an analog connected case. That is, there are examples nilpotent by compact. Also, analogous for discrete case been established solvable still open general groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On polynomially bounded harmonic functions on the Z lattice

We prove that if f : Zd → R is harmonic and there exists a polynomial W : Zd → R such that f + W is nonnegative, then f is a polynomial.

متن کامل

Bi-harmonic Functions on Groups

| Two natural deenitions of bi-harmonic functions on countable groups are shown to essentially coincide. Criteria of absence of non-constant bounded bi-harmonic functions are formulated. A description of these functions for free groups is given. Fonctions bi-harmoniques sur les groupes R esum e R esum e | Nous montrons l' equivalence essentielle de deux d eenitions naturelles des fonctions bi-h...

متن کامل

Harmonic Functions on Discrete Subgroups of Semi - Simple Lie Groups

A description of the Poisson boundary of random walks on discrete subgroups of semi-simple Lie groups in terms of geometric boundaries of the corresponding Riemannian symmetric spaces is given. Let G be a discrete group, and { a probability measure on G. A function f on G is called-harmonic if f(g) = P f(gx) (x) 8 g 2 G. The Poisson boundary of the pair (G;) is the probability space (?;) with a...

متن کامل

On growing connected β-skeletons

A β-skeleton, β ≥ 1, is a planar proximity undirected graph of an Euclidean points set, where nodes are connected by an edge if their lune-based neighbourhood contains no other points of the given set. Parameter β determines the size and shape of the lune-based neighbourhood. A β-skeleton of a random planar set is usually a disconnected graph for β > 2. With the increase of β, the number of edg...

متن کامل

Theta functions on covers of symplectic groups

We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$‎. ‎This representation is obtained from the residues of Eisenstein series on this group‎. ‎If $r$ is odd‎, ‎$nle r

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Groups, Geometry, and Dynamics

سال: 2023

ISSN: ['1661-7207', '1661-7215']

DOI: https://doi.org/10.4171/ggd/660